Педагогика и образование » Методика изучения неравенств » Классификация преобразований неравенств и их систем

Классификация преобразований неравенств и их систем

Можно выделить три типа таких преобразований:

1) Преобразование одной из частей неравенства.

2) Согласованное преобразование обеих частей неравенства.

3) Преобразование логической структуры.

Преобразования первого типа используются при необходимости упрощения выражения, входящего в запись решаемого неравенства. Преобразование одной из частей неравенства используют раньше всех других преобразований, это происходит еще в начальном курсе математики. Прочность владения навыком преобразований этого типа имеет большое значение для успешности изучения других видов преобразований, поскольку они применяются очень часто.

Преобразования второго типа состоят в согласованном изменении обеих частей неравенства в результате применения к ним арифметических действий или элементарных функций. Преобразования второго типа сравнительно многочисленны. Они составляют ядро материала, изучаемого в линии неравенств.

Приведем примеры преобразований этого типа.

1) Прибавление к обеим частям неравенства одного и того же выражения.

2а) Умножение (деление) обеих частей неравенства на выражение, принимающее только положительные значения.

2б) Умножение (деление) обеих частей неравенства на выражение, принимающее только отрицательные значения и изменение знака неравенства на противоположный.

3а) Переход от неравенства a>b к неравенству f(a) >f(b), где f-возрастающая функция, или обратный переход.

3б) Переход от неравенства а<b к неравенству f(a) <f(b), где f - убывающая функция, или обратный переход.

Среди преобразований второго типа преобразования неравенств образуют сложную в изучении, обширную систему. Этим в значительной степени объясняется то, что навыки решения неравенств формируются медленнее навыков решения уравнений и не достигают у большинства учащихся такого же уровня.

К третьему типу преобразований относятся преобразования неравенств и их систем, изменяющие логическую структуру заданий. Поясним использованный термин логическая структура". В каждом задании можно выделить элементарные предикаты - отдельные уравнения или неравенства. Под логической структурой задания мы понимаем способ связи этих элементарных предикатов посредством логических связок конъюнкция или дизъюнкции.

Изучение и использование преобразований неравенств и их систем, с одной стороны, предполагают достаточно высокую логическую культуру учащихся, а с другой стороны, в процессе изучения и применения таких преобразований имеются широкие возможности для формирования логической культуры. Большое значение имеет выяснение вопросов, относящихся к характеризации производимых преобразований: являются ли они равносильными или логическим следованием, требуется ли рассмотрение нескольких случаев, нужна ли проверка? Сложности, которые приходится здесь преодолевать, связаны с тем, что далеко не всегда возможно привести характеризацию одного и того же преобразования однозначно: в некоторых случаях оно может оказаться, например, равносильным, в других равносильность будет нарушена.

В итоге изучения материала линии уравнений и неравенств учащиеся должны не только овладеть применением алгоритмических предписаний к решению конкретных заданий, но и научиться использовать логические средства для обоснования решений в случаях, когда это необходимо.

Еще по теме:

Интеллектуальная готовность ребенка к школе
Наиболее важными показателями интеллектуальной готовности ребенка к обучению в школе являются характеристики развития его мышления и речи. ...

Общая характеристика страны
Что такое 24 часа в жизни Франции? Это - 2083 новорожденных, 108 пар, подписавших Pacs (брачный договор), 550 пластических операций, 14 мил ...

Современные технологии обучения физике
Научная основа традиционного обучения - ассоциативно-рефлекторная теория (концепция). Согласно этой теории, усвоение знаний, формирование у ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2019 - All Rights Reserved