Педагогика и образование » Формирование понятий обратных тригонометрических функций у учащихся на уроках алгебры » Функция, обратная тангенсу

Функция, обратная тангенсу

Функция y=tg x на промежутке принимает все числовые значения: E (tg x)=. На этом промежутке она непрерывна и монотонно возрастает. Значит, на промежуткеопределена функция, обратная функции y = tg x. Эту обратную функцию называют арктангенсом и обозначают y = arctg x.

Арктангенсом числа а называют угол из промежутка , тангенс которого равен а. Таким образом, arctg a есть угол, удовлетворяющий следующим условиям: tg (arctg a) = a и 0 ≤ arctg a ≤ π.

Итак, любому числу х всегда соответствует единственное значение функции y = arctg x (рис. 9).

Очевидно, что D (arctg x) = , E (arctg x) = .

Функция y = arctg x является возрастающей, поскольку функция y = tg x возрастает на промежутке. Нетрудно доказать, что arctg(–x) = – arctgx, т.е. что арктангенс – нечетная функция.

Рис. 9

График функции y = arctg x симметричен графику функции y = tg x относительно прямой y = x, график y = arctg x проходит через начало координат (ибо arctg 0 = 0) и симметричен относительно начала координат (как график нечетной функции).

Можно доказать, что arctg (tg x) = x, если x.

Еще по теме:

Содержание преемственности в работе дошкольного учебного учреждения и школы по математике
Успехи в школьном обучении во многом зависят от качества знаний и умений, сформированных в дошкольные годы, от уровня развития познавательн ...

Развитие геометрии как школьного предмета
Приобретение любого познания всегда полезно для ума, ибо он сможет отвергнуть бесполезное и сохранить хорошее. Ведь ни одну вещь нельзя ни ...

Христианство против пьянства
«Ни пьяницы, ни злоречивые Царства Божия не наследуют» (1 Кор.6;9-10) Святитель Василий Великий говорил: «Нет конца этому злу: пьянство сам ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2018 - All Rights Reserved - www.directeducation.ru