Педагогика и образование » Диалектика развития понятия функции в школьном курсе математики » Аксиомы натуральных чисел

Аксиомы натуральных чисел

Как известно, аксиоматическое построение любой математической теории начинается с перечисления неопределяемых, основных понятий (объектов и отношений) и аксиом, которым должны удовлетворять основные понятия. Вошедшая во всеобщее употребление система аксиом натуральных чисел была предложена итальянским математиком и логиком, профессором Туринского университета Джузеппе Пеано (1858-1932) в статье «О понятии числа», опубликованной в 1891 г. Вот как формулировал Пеано свои пять аксиом:

О есть натуральное число.

Следующее за натуральным числом есть натуральное число.

О не следует ни за каким натуральным числом.

Всякое натуральное число следует только за одним натуральным числом.

Аксиома полной индукции: если какое-либо предложение доказано для 1 и если из допущения, что оно верно для натурального числа n, вытекает, что оно верно для следующего за n натурального числа, то это предложение верно для всех натуральных чисел.

Итак, с аксиоматической точки зрения мы имеем дело с двумя основными понятиями: «натуральные числа» (объект) и «непосредственно следует за» (соотношение). Эти понятия косвенно определяются системой аксиом.

Излагаемая в настоящее время в учебных руководствах система аксиом натуральных чисел лишь по форме несколько отличается от вышеприведенной. Натуральные числа — это элементы всякого непустого множества N, в котором для некоторых элементов а и b установлено отношение «b следует за а» (число, следующее за а, обозначается а*), удовлетворяющее следующим четырем аксиомам:

Существует натуральное число 1, непосредственно не следующее ни за каким натуральным числом, т. е. для любого а имеем: а*¹1.

Для каждого натурального числа а существует одно и только одно непосредственно за ним следующее натуральное число а*, т.е. а = b ® а* = b*.

Любое натуральное число, кроме 1, непосредственно следует за одним и только одним натуральным числом, т. е. если а¹1, то из а*=b*®а=b.

Аксиома индукции. Пусть М — подмножество множества N натуральных чисел, обладающее свойствами: а) 1 принадлежит М, б) если натуральное число а принадлежит М, то а* также принадлежит М; тогда множество М содержит все натуральные числа, т.е. М совпадает с N.

То, что в первоначальной формулировке (Пеано) первый элемент есть 0, а не 1, не имеет принципиального значения. Дело в том, что в настоящее время нуль причисляется не к натуральным, а к целым числам. Символы 1, 2, 3, ., которыми обычно обозначают натуральные числа, были выработаны, как мы уже знаем, на протяжении веков. На основе аксиом 1—4 можно определить арифметические действия и построить всю арифметику натуральных чисел чисто дедуктивным путем. В частности, на основе аксиомы 4 доказывается следующее предложение: если некоторая теорема Т, в формулировку которой входит натуральное число n, верна для n=1 и в предположении, что она верна для n, будет верна и для n+1, то Т верна для любого натурального числа. Это предложение, эквивалентное аксиоме 4, называют принципом математической индукции. На этом принципе и основан метод математической индукции, с помощью которого доказывают многие теоремы арифметики, алгебры, теории чисел и геометрии. Под индукцией (от латинского inductio — наведение) понимают в логике одну из форм умозаключений, состоящую в выведении общего суждения относительно бесконечного множества объектов на основании изучения некоторого конечного числа частных случаев.

Еще по теме:

Исследование уровня сформированности самостоятельности у детей старшего дошкольного возраста
Данное исследование проводилось на базе МБДОУ «Миляшкай» с.Муслюмово Муслюмовского района РТ. В исследовании участвовали 26 детей экспериментальной группы и 26 детей контрольной группы, и их родители. В экспериментальной группе мы проводили методики и определили уровень самостоятельности, а в контр ...

Воспитание детей младшего и среднего школьного возраста
Следующий возрастной этап, не менее важный в воспитании ребенка, — младший школьный возраст. В этот период ребенок проходит сложный путь от новичка первоклассника, имеющего лишь слабое представление об учебном процессе, до ученика, освоившего ритм школьной жизни, овладевшего значительным багажом зн ...

Цели деятельности современной школьной библиотеки
И.С. Пилко, доктор педагогических наук Кемеровского государственного университета культуры и искусств, утверждает, что любая библиотечная технология обладает рядом признаков: -целесообразность достижение планируемого результата с оптимальными затратами; -процессуальность= алгоритмическое представле ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2024 - All Rights Reserved 0.0133