Педагогика и образование » Обучение математике в детском саду » Обучение математике в старшей группе детского сада

Обучение математике в старшей группе детского сада

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Страница 10

На первом занятии всем детям называют одно число, а в дальнейшем сидящим за разными столами или в разных рядах могут называть разные числа. Наконец, каждому ребенку можно давать индивидуальное задание. Раскладывание 3 видов предметов занимает много времени, поэтому, предлагая такие задания, целесообразно называть числа в пределах 8.

Дети должны научиться рассказывать, по скольку у них игрушек каждой разновидности, и делать обобщение. Они не сразу овладевают умением отражать в ответе частное и общее. Сначала им предлагают рассказать, по скольку у них разных предметов. «У меня на верхней полоске 4 матрешки, на средней 4 елочки, на нижней 4 грибочка»,— перечисляет ребенок. «Правильно, одинаковых игрушек у тебя по 4»,— обобщает педагог. Ребенок повторяет обобщение. Постепенно дети научаются самостоятельно описывать, по скольку у них игрушек в каждой группе, и делать обобщения. Важно, чтобы они пользовались разными формулировками ответа, включающего обобщение, например: "На верхней полоске 7 квадратов, на средней — 7 прямоугольников, на нижней — 7 кругов, всех фигур поровну — по 7"; или: «Всех фигур по 7: 7 квадратов, 7 прямоугольников и 7 кругов». Мысль ребенка должна следовать как от частного к общему, так и от общего к частному. Полезно варьировать вопросы, требующие как конкретизации, так и обобщения: «Сколько у вас групп (рядов) предметов? По скольку предметов в каждом ряду? По скольку разных предметов? Что можно сказать о количестве предметов всех групп?» И т. п.

Воспитатель разнообразит материал, характер заданий. Ребята, например, подбирают картинки, на которых нарисовано указанное число предметов. Выполняя задание «Назовите, каких предметов у нас по 4, по 5, по 6 .» (называют все числа до 10), дети находят равночисленные множества в окружающей обстановке.

Они видят, что любых предметов может быть поровну: по 2, по 3, по 4 и т. д.

Детям шестого года жизни показывают возможность дробления предмета на равные доли, их учат устанавливать отношения между целым и частью. Разделив предмет, они получают 2—4 равные части, а соединив их вместе,— 1 целый предмет.

В качестве единицы счета выступает то предмет, то его часть. Понятие о единице углубляется, соответственно развивается и понятие о числе.

Обучение делению предмета на равные доли является основной задачей 3—4 занятий. Начинать его следует с деления предмета на части путем складывания (сгибания), но не разрезания: разрезав предмет, дети каждую его часть воспринимают как отдельный объект, независимый от целого. Например, на вопрос, что больше: целое или его часть, некоторые из них отвечают, что «частей больше, потому что их 2, а целое только одно». Установление связи между размером и принадлежностью целому его части подменяется поштучным сопоставлением объектов. Не понимая существа вопроса, дети не могут дать соответствующий ответ.

На первом занятии педагог показывает способ деления прямоугольного листа бумаги на равные части путем складывания (сгибания) его пополам (на 2 части) и еще раз пополам (на 4 части). Материалом для этой работы, кроме листа бумаги, могут служить модели геометрических фигур из бумаги. Демонстрируя возможность деления предмета как на 2 равные, так и на 2 неравные части, детям дают представление о том, что 1 из 2 равных частей целого называется половиной, половинами являются обе равные части. Если предмет разделен на 2 неравные части, то их нельзя назвать половинами. В таком случае говорят: предмет разделен на 2 (4) неравные части.

Страницы: 5 6 7 8 9 10 11 12 13 14 15

Еще по теме:

Индивидуально-дифференцированный на основе двигательной активности
Особых знаний и умений педагога требует руководство двигательной активностью детей. Различия в объеме, продолжительности, интенсивности и содержания двигательной активности настолько велики, что выделяются отчетливо даже при обычном наблюдении дети средней, большой и малой подвижности. Дети средней ...

Особенности и средства народного воспитания на современном этапе развития педагогики
Под средствами воспитания народной педагогики понимаются каналы воздействия на сознание и поведение ребенка с целью сообщения необходимых полезных сведений, формирования практических умений и навыков, развития мотивов привычек нравственного поведения. Среди исследователей народной педагогики нет ед ...

Классификация преобразований неравенств и их систем
Можно выделить три типа таких преобразований: 1) Преобразование одной из частей неравенства. 2) Согласованное преобразование обеих частей неравенства. 3) Преобразование логической структуры. Преобразования первого типа используются при необходимости упрощения выражения, входящего в запись решаемого ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2021 - All Rights Reserved 0.0275