Один из важнейших показателей эффективности обучения заключается в том, как обеспечивается в процессе обучения психическое развитие ребенка и, в частности, развитие его мыслительных способностей. Следовательно, на уроке по любому предмету, в процессе обучения, необходимо развивать мышление учащихся. Применительно к математике можно сказать, что сам процесс ее изучения должен приводить к умению логически, доказательно мыслить, умению творчески, а не стереотипно, подходить к решению любой задачи.
Настоящая ситуация в школе такова: большинство задач решается по определенным алгоритмам, и быстрое их решение обычно зависит от знания формул и умения их применять. При этом основное усложнение задачи производится за счет увеличения действий решения, усложнения чисел. Многие этапы решения таких задач у учеников приобретает автоматический характер, они не задумываются над каждым из них. Отсюда нерациональное, а иногда и неправильное решение задачи.
Можно выделить следующие причины механического запоминания ряда действий при решении задач:
выбор метода решения не вызывает трудностей и сомнений;
решение сводится к одной и той же операции, которая может быть и довольно сложной, но состоящей из ряда элементарных операций;
эту операцию (ее результат) учащемуся не надо выбирать среди других, которые возможны в сходных условиях;
предлагаемые задачи являются задачами одного типа, в следствии чего не являются непривычными.
Учащиеся очень быстро перестают применять изученные определения, теоремы, сокращая обоснование решения задачи. Поэтому система заданий должна составляться учителем так, чтобы нарушались вышеуказанyые причины, т.к. нарушение хотя бы одной из них приводит к активизации мыслительной деятельности учащихся.
В объяснительной записке программ по математике для общеобразовательных учреждний говорится: «Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитании умений действовать по алгоритму и конструировать новые». Конструированию нового всегда предшествует исследование. Большим потенциалом в развитии исследовательских умений таких, как умение наблюдать, анализировать, выдвигать и доказывать гипотезу, обобщать и др., безусловно, обладают задачи с параметрами (в частности уравнения и неравенства с параметрами). Данные задачи играют важную роль в формировании логического мышления и математической культуры у школьников. Известен и понятен интерес экзаменационных комиссий ВУЗов к этим задачам: уравнения и неравенства с параметрами - эта тема, на которой проверяется не натасканность ученика, а подлинное понимание материала. Кроме того, учащиеся, владеющие методами решения задач с параметрами, будут более творчески подходить к решению любой задачи.
Но в школьном курсе, как правило, очень мало внимания обращают на такие задачи. Это недостаток школьного обучения.
В курсе алгебры основной школы выделяются следующие основные содержательно-методические линии: линия числа, тождественных преобразований, линия уравнений, неравенств и их систем, геометрическая, алгоритмическая, функциональная линии, а так же появившаяся в последнее время вероятностно-статистическая линия. Однако ограниченность круга задач, предлагаемых в УМК, однотипность алгоритмов, присущих им, уже не может удовлетворять современным потребностям школьного образования. В средней и старшей школе превалирует классический подход к преподаванию не только математики, но и большинства предметов. Это объясняется рядом причин методического и психологического характера, в том числе и отсутствием инструментария реализации задач развивающего образования, необходимого современным учащимся.
Таким инструментарием в курсе математики на мой взгляд может стать содержательно-методическая линия задач с параметрами. Глубокая, богатая идеями и методами - содержательно-методическая линия задач с параметрами как нельзя лучше позволит развить активную творческую деятельность учащегося, его системное мышление, подготовить его к решению действительно творческих задач, которые со временем перед ним поставит сама жизнь.
В своей дипломной работе я хочу объяснить, почему важно включать задачи с параметрами в учебный процесс для развития мышления учащегося, показать на какие психологические особенности подростков необходимо при этом обратить внимание. Также предложить, на мой взгляд, один из самых подходящих учебников, рассматривающий разные виды задач с параметрами как для общеобразовательного класса, так и для класса с углубленным изучением математики, рассмотреть задания из разных школьных тем по алгебре средней школы, предложить задачник, содержащий задачи как для сильных, так и для средних учеников.
Внеклассное чтение как средство формирования нравственных представлений и поступков
у младших школьников
Художественная литература, изобразительное искусство, музыка, кино, диафильмы и другие средства можно объединить в группу художественных средств. Эта группа средств очень важна в решении задач нравственного воспитания, так как способствует эмоциональной окраске познаваемых моральных явлений. Многоч ...
Музыкальное воспитание и развитие мыслительной
деятельности дошкольников
Мир музыки особенно привлекателен для ребенка. Еще в утробе матери будущий человек начинает реагировать на музыкальные звуки, и существует предположение, что именно в этот период можно влиять на формирование музыкальности. И уж, вне всякого сомнения, первый вид искусства, который воспринимает ребен ...
Классификация моделей по фактору времени
По фактору времени модели делятся на: - Статические – модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту); - Динамические – модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.