Несмотря на то, что программа по математике средней общеобразовательной школы не упоминает в явном виде о задачах с параметрами, было бы ошибкой утверждать, что вопрос о решении задач с параметрами никоим образом не затрагивается в рамках школьного курса математики. Достаточно вспомнить школьные уравнения: ax2+bx+c=0, y=kx, y=kx+b, tgx=a, в которых a, b, c, k не что иное, что такое параметр, в чем его отличие от неизвестного.
Рассмотрим понятие параметра.
1. Понятие параметра
Параметр (от греческого слова parametron - отмеривающий) - величина, значение которой служат для различения некоторого множества между собой.
Под задачами с параметрами понимают задаси, в которых технический и логический ход решения и форма результата зависят от входящих в условие величин, численные значения которых не заданы конкретно, но должны считаться известными. Изучению задач с параметрами в школе отводится незначительное место, хотя неявно с этим понятием учащиеся сталкиваются, например, при изучении функции y=kx, для этой функции в качестве параметра выступает коэффициент k прямой пропорциональности.
В математике параметры вводятся для обозначения некоторого класса объектов, обладающих общими свойствами. Например, y=log2x с параметром a определяет класс логарифмических функций. Множеству значений a > 1 соответствуют частные логарифмические функции, обладающие одинаковыми свойствами. Множеству значений 0 < a < 1 так же соответствую обладающие общими свойствами частные логарифмические функции, но уже другого рода. На каждом из этих множеств можно рассматривать параметр как постоянную величину, а при переходе значений параметра из одного множества в другое - как переменную величину.
Если параметру, содержащемуся в уравнении (неравенстве) придать некоторое числовое значение, то возможен один из двух случаев:
1) получится уравнение (неравенство), содержащее лишь данные числа и неизвестные, и не содержащие параметров;
2)получится условие, лишенное смысла.
В первом случае значение параметра называют допустимым, во втором - недопустимым. При решении задач допустимые значения параметров определяются из конкретного смысла. Например, для a < 0 значение выражения logax для любого x не определено.
Рассмотрим методическую концепцию подхода к изучению темы «Уравнения с параметром». Итак, что такое уравнение с параметром? Пусть дано уравнение
F(x,a) = 0(1)
Если ставится задача: отыскать такие пары (x,a), которые удовлетворяют данному уравнению, то уравнение (1) - это уравнение с двумя переменными x и a. Однако относительно уравнения (1) можно поставить другую задачу: если придать переменной a какие либо фиксированное значение, то уравнение (1) можно рассматривать как уравнение с олной переменной x. Решения этого уравнения определяются выбранным значением a.
Если ставиться задача для каждого значения а из некоторого числового множества А решить уравнение (1) относительно x, то уравнение (1) называют уравнение с переменной x и параметром а, а множество А - областью изменения параметра.
Уравнение (1) - это, по существу, краткая запись семейства уравнений. Уравнения этого семейства получаются из уравнения (1) при различных конкретных значениях параметра а.
Так, уравнение 2а(а-1)x=a-2, у которого область изменения параметра а является множество А={-1;0;1;2;3}, есть краткая запись следующего семейства уравнений:
Проблема умственной отсталости
Проблеме умственной отсталости до последнего времени выдвигается на первый план в качестве основного момента интеллектуальная недостаточность ребенка, его слабоумие. Это закреплено в самом определении детей, которых называют обычно слабоумными или умственно отсталыми. Все остальные стороны личности ...
Упражнения и задания для формирования ритмико-интонационных навыков
В связи с речевым характером навыков при обучении интонации необходимо использовать условно-коммуникативные упражнения на рецепцию и репродукцию. Упражнения на рецепцию предназначены для развития интонационного слуха. 1. Упражнения на распознавание: - послушайте поручения, которые родители дают дет ...
Организация процесса оценки эффективности воспитательной деятельности офицеров
Эффективным условием оптимизации организации процесса оценки эффективности воспитательной деятельности является создание целого комплекса методик, тестов, разработку программ по оценке для ЭВМ, обеспечение субъектов оценки необходимыми теоретическими источниками. В отделах воспитательной работы сое ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.