Педагогика и образование » Методика изучения неравенств » Методика изучения темы "Неравенства" в начальной школе

Методика изучения темы "Неравенства" в начальной школе

Страница 3

При изучении действий в других концентрах упражнения на сравнение выражений усложняются: более сложными становятся выражения, учащимся предлагаются задания вставить в одно из выражений подходящее число так, чтобы получить верные равенства или неравенства; проверить, верные ли равенства (неравенства) даны, неверные исправить, изменив знак отношения или число в одном из выражений; составить из данных выражений верные равенства или верные неравенства. Сами выражения подбираются таким образом, чтобы, сравнивая выражения, учащиеся наблюдали свойства и зависимости между компонентами и результатами действий. Например, после того как установили с помощью вычислений, что сумма 60+40 больше суммы 60+30, учитель предлагает сравнивать соответствующие слагаемые этих сумм, и дети отмечают, что первые слагаемые в этих суммах одинаковые, а второе слагаемое в первой сумме больше, чем во второй. Много раз, подмечая эту зависимость, учащиеся приходят к обобщению и затем свои знания используют при сравнении выражений.

Таким образом, при изучении всех концентров упражнения на сравнение чисел и выражений, с одной стороны, способствуют формированию понятий о равенствах я неравенствах, а с другой стороны, усвоению знаний о нумерация и арифметических действиях, а также выработке вычислительных навыков.

Неравенства с переменной вида: х+3<7, 10-х>5, х-4>12, 72: х<36 вводятся во II классе. Заранее ведется соответствующая подготовительная работа: включаются упражнения, в которых переменная обозначается не буквой, а "окошечком" (квадратом), например: □ >0, 6+4> □, 7+ □ <10 и т.д. Учащимся предлагается подобрать такое число, чтобы получить верную запись. При выполнении таких упражнений учитель должен побуждать детей к подстановке различных чисел; например, в неравенстве □ >0 можно подставить число 1 (1>□), можно 2 (2>□), можно З (3>□) и т.д. После того как названо несколько чисел, полезно обобщить наблюдения (например, во втором неравенстве можно подставить любое число, которое меньше 10-от 0 до 9).

Рассматривая во II классе, например, неравенство х+3<10, учащиеся путем подбора находят, при каких значениях буквы х значение суммы х+3 меньше, чем 10. В каждом таком задании дается множество чисел - значений переменной. Ученики подставляют значения буквы в выражение, вычисляют значение выражения и сравнивают его с заданным числом. В результате такой работы выбирают значения переменной, при которых данное неравенство является верным.

Термины "решить неравенство", "решение неравенства" не вводятся в начальных классах, поскольку во многих случаях ограничиваются подбором только нескольких значений переменной, при которых получается верное неравенство.

Позднее в упражнениях с неравенствами значения переменной не даются, учащиеся сами подбирают их. Такие упражнения, как правило, выполняются под руководством учителя.

Можно ознакомить детей с таким приемом подбора значений переменной в неравенстве. Пусть дано неравенство 7×k<70. Сначала устанавливают, при каком значении k данное произведение равно 70 (при k=10). Чтобы произведение было меньше, чем 70, следует множитель брать меньше, чем 10. Учащиеся выполняют подстановку чисел 9, 8 и т.д. до нуля, вычисляют и сравнивают полученные значения выражения с заданным (70) и называют ответ.

Страницы: 1 2 3 4

Еще по теме:

О введении иностранного языка в младшей школе
Четырехлетнее начальное образование рассматривается как первая ступень но­вой 12-летней школы, перед которой ставятся задачи, отвечающие ми ...

Общая характеристика содержания современного европейского образования
Содержание современного европейского образования так же ориентировано на конкурентоспособность на рынке труда. В 2000 г. В Лиссабоне прошел ...

Обзор философско-педагогических идей мыслителей Средневекового Востока
Мыслители Арабского Востока посвятили свои труды разработке программы гармонического развития личности. Они сами были эталоном подобной гар ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2019 - All Rights Reserved - www.directeducation.ru