Произведение и частное двух функций поддаются общему исследованию, на основании которого и может быть построен график.
Часто построение графика упрощается, если предварительно построить вспомогательные графики функций, входящих в произведение или частное.
Иногда произведение или частное возможно преобразовать так, что построение графика преобразованной функции оказывается проще.
Эти и некоторые другие приемы построения графиков произведения и частного двух функций иллюстрируются следующими примерами.
y=xsinx (Рис. 53).
Рис. 53.
Строятся (штриховыми линиями) вспомогательные графики функций, входящих в заданное произведение: у1=х; y2=sinx.
Перемножение этих графиков упрощается благодаря тому, что функция y2=sinx периодически принимает значения 0 и 1. В первом случае искомый график y=xsinx пересекает ось абсцисс, во втором - касается вспомогательной прямой у1=х.
Так как функция y2=sinx периодически принимает еще значение (-1), то построение облегчается, если построить еще одну вспомогательную прямую: у3=-х (на рисунке эта прямая построена штрих-пунктирной линией).
Для всех х=2 заданный график касается этой вспомогательной прямой, так как для этих значений х
sinx=-1.
Так как заданная функция y=xsinx четная [(-x)sin(-х)= =(-х)(-sinx)=xsinx], то указанное построение проводится только для правой части графика; левая часть графика строится затем симметрично правой.
Рис. 54.
2. у= -хcosx (Рис. 54).
Так же, как и в предыдущем случае, помимо графиков двух вспомогательных функций: у1=-х и y2=cosx, входящих в заданное произведение, построен еще третий вспомогательный график функции: у3=х.
Далее построение аналогично предыдущему.
3. y= (Рис. 55).
Замечаем, что заданная функция нечетная, так как =
= =-
. Поэтому построение проводится только для правой части графика, левая часть графика строится затем косо симметрично правой.
На чертеже построены два графика вспомогательных функций, входящих в. заданное частное: и y2=sinx, и третий вспомогательный график: у3=-
.
Остальные построения аналогичны предыдущим.
Рис. 55.
Следует особо объяснить вид графика при х®0, так как в этом случае получается неопределенность вида , которую следует раскрыть.
Известно, что , т. е. что при x®0sinx~х. Следовательно, можно записать:
Художественно-творческая деятельность
как гарант повышения уровня подготовки ребенка к обучению в школе
Опытно-экспериментальное исследование осуществлялось на базе ДОУ № 32 «Рябинушка». В эксперименте принимали участие 2 группы детей в возрасте 5,5 - 6 лет – экспериментальная и контрольная. Количество детей каждой группы – 20 человек. Гипотеза исследования: целенаправленная организация изобразительн ...
Значение строительных игр для развития детей старшего дошкольного возраста
В строительных играх детей старшей группы происходят существенные изменения, отличающие их от игр детей младшей и средней групп. Игры детей шестого года жизни отличаются более широкими и разнообразными замыслами. В процессе игры возрастает потребность в различных предметах, необходимых для реализац ...
Методики преподавания на современном этапе
Использование проектной методики в преподавании иностранного языка. Одним из наиболее действенных и результатирвных методов обучения является проектная методика. Проект – это работа, которую ученики самостоятельно планируют и самостоятельно выполняют. Работа над проектом базируется на разных метода ...
Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.