Педагогика и образование » Преемственность в обучении математике детского сада и школы » Понятие преемственности в подготовке ребенка к школе

Понятие преемственности в подготовке ребенка к школе

Страница 2

Одним из ведущих принципов образования является принцип преемственности основных типов образовательно-воспитательных учреждений, который обеспечивает возможность перехода от одних ступеней образования к другим (детский сад, начальная школа).

Так, В.В. Давыдов справедливо отмечает, что традиционно «принцип преемственности лежит в обеспечении связей между построением учебных предметов для начальной школы и тем типом жизненных знаний, слияния форм научных и житейских понятий в программах и учебниках». Программы и учебные планы обеспечивают объективные условия преемственности. Например, программа дошкольного образования «Малятко», определяет круг задач для первого звена в системе образования, согласуется с комплексом требований, которые ставит перед выпускником дошкольного учреждения начальная школа, «Программы для средней общеобразовательной школы, 1 - 2 классы».

Вместе с тем, апробируя систему новых дидактических принципов (вместо принципа доступности - принцип развивающего обучения; вместо принципа наглядности - принцип предметности и т.д.). В.В. Давыдов считает целесообразным сохранить принцип взаимосвязи и преемственности, однако «это должно связывать качественно разные стадии обучения - разных как по содержанию, так и по способам подачи их детям». Это означает что с приходом в школу, ребенок должен почувствовать новизну и своеобразие тех понятий, их отличие от дошкольного обучения.

По мнению Л.С. Выготского если содержание школьного образования выстраивается в «школьной логике» - логике будущих школьных предметов, то практикуется обучение усложненным для дошкольников предметам, игнорируются объективные возрастные закономерности развития ребенка, характерные для дошкольного возраста, назревает опасность таких негативных последствий, как потеря у детей интереса к учебе.

По словам автора популярного пособия по развитию математических способностей детей младшего дошкольного возраста В.И Стаховской, иногда, наоборот, дублирование целей, задач, форм и методов начальной школы в дошкольном учреждении может спровоцировать негативное отношение ребенка к данным предметам. Первое и главное требование начальной школы - сформированность у выпускников детского сада интереса к учебной деятельности, желания учиться, создание прочной базовой основы. Но школу не удовлетворяет формальное усвоение знаний и умений. Необходимо не только качество этих знаний, но и их осознанность, гибкость и прочность. Выпускники дошкольного учреждения должны осознанно, с пониманием сути явлений уметь использовать приобретенные знания и навыки не только в обычной, стереотипной, но и в измененной ситуации, в новых, необычных обстоятельствах (игра, труд и др.).

Начальная школа призвана помочь учащимся в полной мере проявлять свои способности, развить инициативу, самостоятельность, творческий потенциал. Успешность реализации этой задачи во многом зависит от сформированности у учащихся познавательных интересов в детском саду. Проблема развития познавательного интереса ребенка решается средствами занимательности, игры, создания нестандартных ситуаций на занятиях.

Страницы: 1 2 3

Еще по теме:

Интеллектуальная готовность ребенка к школе
Наиболее важными показателями интеллектуальной готовности ребенка к обучению в школе являются характеристики развития его мышления и речи. ...

Общая характеристика страны
Что такое 24 часа в жизни Франции? Это - 2083 новорожденных, 108 пар, подписавших Pacs (брачный договор), 550 пластических операций, 14 мил ...

Современные технологии обучения физике
Научная основа традиционного обучения - ассоциативно-рефлекторная теория (концепция). Согласно этой теории, усвоение знаний, формирование у ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2019 - All Rights Reserved