Педагогика и образование » Обучение математике в детском саду » Закрепление знания о взаимно-обратных отношениях между числами

Закрепление знания о взаимно-обратных отношениях между числами

Страница 2

Проводят ряд упражнений с числовыми фигурами. Например, вдоль доски в ряд педагог расставляет числовые фигуры с количеством кружков от 1 до 10; 2 фигуры он помещает не на свои места, детям предлагает определить, какие фигуры «заблудились». Ряд числовых фигур может быть выстроен как в прямом, так и в обратном порядке.

В итоге занятия проводят игру «Разговор чисел». Педагог вызывает несколько детей, дает им числовые фигуры и говорит: «Вы будете числа, а какие — вам подскажет карточка! Числа, встаньте по порядку, начиная с самого маленького». После проверки воспитатель вызывает «числа» и говорит: «Число 4 сказало числу 5: «Я меньше тебя на 1!» Что же число 5 ответило числу 4? А что оно сказало числу 6?» И т. д.

Вначале опираясь на числовой ряд, представленный в виде схемы, а затем без опоры на наглядный материал дети отвечают на такие вопросы: «Какое число надо назвать при счете до 2, 3, 4? Перед каким числом называют число 5? После какого числа называют число 8? Какое число больше, чем 7, на 1? Какое меньше? Почему?» И т. п.

Надо следить за тем, чтобы дети обязательно называли оба сравниваемых числа. Это важное условие осознания того, что каждое число (кроме 1) больше одного, но меньше другого, смежного с ним, т. е. понимания относительности значения каждого числа. Постепенно дети усваивают, что выражение «до» требует назвать число меньше данного, а выражение «после» - больше данного.

Важно, чтобы дети научились быстро и уверенно вести счет от 1 до 10 в прямом и обратном порядке, т. е. прочно усвоили последовательность первых 10 натуральных чисел. Этому способствуют разнообразные упражнения в счете, которые проводят без опоры на наглядный материал. («Посчитай от 1 до 10. Посчитай в обратном порядке. Какое число идет до 5? А после 5? Назови 3 числа, которые идут после 4, а теперь — до 4. Угадай, какое число пропущено между числами 6 и 8, 5 и 7 и в обратном порядке: 7 и 5, 8 и 6. Назови числа, соседние 7. Назови 2 числа, пропустив между ними 1. Назови 3 (4) числа, пропустив между ними 1».)

Проводят игры «Считай дальше», «Кто знает, пусть дальше считает».

Интерес к таким упражнениям повышается, если они проводятся в кругу и воспитатель не просто вызывает ребенка, а бросает ему мяч, платочек и т. п.

Важно, чтобы в поиске нужного числа дети не вели счет от 1, а ориентировались на связи и отношения между смежными числами. Если окажется, что кто-либо из детей не в состоянии этого сделать, необходимо вернуться к упражнениям в сравнении совокупностей предметов, т. е. к сравнению чисел с опорой на наглядный материал.

Упражнения в устном счете проводят во II и III кварталах, они предпосылаются ознакомлению детей с приемами вычисления при решении арифметических задач. В конце учебного года полезно предлагать детям рассказывать о том, что они знают о тех или иных числах (7 и 8, 6 и 5).

Если в своих ответах дети укажут на то, что 7 больше 6, а 6 меньше 7 на 1, число 7 содержит 7 единиц, а 6 — только 6, или: чтобы получилось 7, надо к 6 добавить 1, а чтобы получилось 6, надо от 7 отнять 1, или: число 6 идет до 7, а 7 — после 6, то можно с уверенностью сказать, что ребята хорошо усвоили знания о числе в объеме требований программы и готовы к усвоению вычисления.

В плане подготовки детей к деятельности вычисления необходимо познакомить их с составом числа из 2 меньших чисел. Детей знакомят не только с разложением числа на 2 меньших, но и с получением числа из 2 меньших чисел. Это способствует пониманию детьми особенностей суммы как условного объединения 2 слагаемых.

Детям показывают все варианты состава чисел в пределах пятка.

Число 2 — это 1 и 1,

- 3 — это 2 и 1, 1 и 2,

4 — это 3 и 1, 2 и 2, 1 и 3,

5 — это 4 и 1, 3 и 2, 2 и 3, 1 и 4.

Воспитатель выкладывает на наборном полотне в ряд 3 кружка одного цвета, просит детей сказать, сколько всего кружков, и указывает, что в данном случае группа составлена из 3 кружков красного цвета: 1, 1 и еще 1. «Группу из 3 кружков можно составить и по-другому», — говорит воспитатель и поворачивает третий кружок обратной стороной. «Как теперь составлена группа?» — спрашивает педагог. Дети отвечают, что группа составлена из 2 кружков красного цвета и 1 кружка синего цвета, а всего — из 3 разноцветных кружков.

Воспитатель делает вывод, что число 3 можно составить из чисел 2 и 1, а 2 и 1 вместе составляют 3. Затем поворачивает обратной стороной второй кружок, и дети рассказывают, что теперь группа составлена из 1 красного и 2 синих кружков. Обобщая в заключение ответы детей, воспитатель подчеркивает, что число 3 можно составить по-разному: из 2 и 1, из 1 и 2. Данное упражнение наглядно выявляет состав числа, отношение целого и части, поэтому с него целесообразно начинать знакомство детей с составом чисел.

Страницы: 1 2 3 4 5 6 7

Еще по теме:

Индивидуальная работа при использовании метода сказкотерапии
Сказкотерапия как психологический метод накладывает свои возрастные ограничения при работе с детьми: ребенок должен иметь четкое представле ...

Рейтинговая система контроля
В последние годы все большее распространение получает рейтинговая система контроля успешности обучения студентов, позволяет снять недостатк ...

Развитие физических качеств детей в младшем школьном возрасте
Развитие ребенка младшего школьного возраста, становление его личности зависит в большей степени от его способности к действию, его адекват ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2018 - All Rights Reserved - www.directeducation.ru