Педагогика и образование » Методика изучения неравенств » Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно-методическую линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики.

Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.

а) Прикладная направленность линии уравнений и неравенств раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.

В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, неравенств и их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.

б) Теоретико-математическая направленность линии уравнений и неравенств раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, неравенств и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений и неравенств связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений и неравенств.

в) Для линии уравнений и неравенств характерна направленность на установление связей с остальным содержанием курса математики. Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий, - это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений, неравенств, систем. Например, числовые промежутки выделяются неравенствами или системами неравенств. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями (k-натуральное число, большее 1) и

Связь линии уравнений и неравенств с числовой линией двусторонняя. Приведенные примеры показывают влияние уравнений и неравенств на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений и неравенств.

Линия уравнений и неравенств тесно связана также и с функциональной линией. Одна из важнейших таких связей приложения методов, разрабатываемых в линии уравнений и неравенств, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т.д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.

Еще по теме:

Гуманистический идеал эпохи Возрождения в работах М. Монтеня, Ф. Рабле, Т. Мора, Т. Кампанеллы, В. да Фельтре
Родиной одного из величайших движений, которое когда-либо переживало человечество, – Возрождения – стала Италия. В XIV–XV вв. Италия представляла собой государство, в котором сосредоточилась политическая, экономическая, религиозная, культурная, образовательная жизнь. Широкие торговые и иные экономи ...

История создания «вальдорфских школ»
Р. Штайнер (1861–1925) – австрийский педагог, мыслитель, философ. Философское учение Р. Штайнера, антропософия (antropos – человек, sорhiа – мудрость), рассматривает педагогику как науку о человеке – совокупности трех составляющих: тела (опорно-двигательная система, обмен веществ, действенно-волева ...

Методика развития представлений о труде взрослых у детей шестого года жизни в процессе проведения экскурсий
На основе анализа психолого-педагогической и методической литературы по проблеме использования экскурсий с целью познавательного развития дошкольников, а также результатов констатирующего изучения состояния работы по данной проблеме в ДОУ, мы пришли к заключению, что развитие представлений о труде ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2024 - All Rights Reserved 0.0138