Педагогика и образование » Диалектика развития понятия функции в школьном курсе математики » Различные современные подходы к определению понятия «функция»

Различные современные подходы к определению понятия «функция»

Страница 4

Решение. Первое слагаемое f(х) определено при выполнении двух условий: 1) подкоренное выражение

Область определения функции f(x)

0 1 2

Область определения функции g(x),

0

Область определения функции f(x)+g(x).

0 1 2

Рис. 1.

неотрицательно, 2) знаменатель не обращается в нуль. Первое условие означает, что x³1 второе условие означает, что х¹2. Таким образом, область определения функции f(х) представляет собой объединение полуинтервала [1,2) и бесконечного интервала (2,¥). Далее, второе слагаемое g(x) определено при 5-x2³0, т.е. при -£х£. Иначе говоря, областью определения функции g(x) является отрезок [-,+].

Но для того, чтобы некоторая точка х=а принадлежала области определения функции у=f(х)+g(х), необходимо и достаточно, чтобы при х=а была определена и функция f(х), и функция g(х). Иными словами, область определения функции у=f(х)+g(х) представляет собой пересечение областей определения функций f(х) и g(х). Следовательно (рис. 1), область определения функции у=f(х)+g(х) представляет собой объединение полуинтервалов [1, 2) и (2, ].

Страницы: 1 2 3 4 

Еще по теме:

Детский коллектив как системообразующий фактор воспитания
Латинское слово «коллективус» переводят по-разному - сборище, толпа, совместное собрание, объединение, группа. Неудивительно, что оно стало ...

Общие понятия о модульной системе обучения
Модульная система производственного обучения впервые была разработана Международной организацией труда (МОТ) в 70-х годах ХХ века как обобщ ...

Закономерности и принципы воспитания
Психолого-педагогические исследования последних десятилетий показали, что первостепенное значение имеет не столько знание воспитателем возр ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2019 - All Rights Reserved - www.directeducation.ru