Педагогика и образование » Диалектика развития понятия функции в школьном курсе математики » Различные современные подходы к определению понятия «функция»

Различные современные подходы к определению понятия «функция»

Страница 4

Решение. Первое слагаемое f(х) определено при выполнении двух условий: 1) подкоренное выражение

Область определения функции f(x)

0 1 2

Область определения функции g(x),

0

Область определения функции f(x)+g(x).

0 1 2

Рис. 1.

неотрицательно, 2) знаменатель не обращается в нуль. Первое условие означает, что x³1 второе условие означает, что х¹2. Таким образом, область определения функции f(х) представляет собой объединение полуинтервала [1,2) и бесконечного интервала (2,¥). Далее, второе слагаемое g(x) определено при 5-x2³0, т.е. при -£х£. Иначе говоря, областью определения функции g(x) является отрезок [-,+].

Но для того, чтобы некоторая точка х=а принадлежала области определения функции у=f(х)+g(х), необходимо и достаточно, чтобы при х=а была определена и функция f(х), и функция g(х). Иными словами, область определения функции у=f(х)+g(х) представляет собой пересечение областей определения функций f(х) и g(х). Следовательно (рис. 1), область определения функции у=f(х)+g(х) представляет собой объединение полуинтервалов [1, 2) и (2, ].

Страницы: 1 2 3 4 

Еще по теме:

Интеллектуальная готовность ребенка к школе
Наиболее важными показателями интеллектуальной готовности ребенка к обучению в школе являются характеристики развития его мышления и речи. ...

Общая характеристика страны
Что такое 24 часа в жизни Франции? Это - 2083 новорожденных, 108 пар, подписавших Pacs (брачный договор), 550 пластических операций, 14 мил ...

Современные технологии обучения физике
Научная основа традиционного обучения - ассоциативно-рефлекторная теория (концепция). Согласно этой теории, усвоение знаний, формирование у ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2019 - All Rights Reserved