Педагогика и образование » Диалектика развития понятия функции в школьном курсе математики » График суммы и разности двух функций

График суммы и разности двух функций

Страница 5

Так как среднее арифметическое двух положительных чисел больше среднего геометрического этих чисел или ему равно, то

Минимальное значение суммы имеет место при условии, что =2; откуда получаем:

; ;

x= и

Для заданной функции, следовательно, имеем:

при х==.

Левая ветвь графика косо симметрична правой.

20. у=х- (рис. 50).

Рис. 50.

Функция нечетная. Построение проведено для х>0.

Вспомогательные функции: у1=х и у2=-.

Ординаты искомого графика получаются алгебраическим сложением ординат у1 и у2. Так как ординаты графика у2 отрицательны, то они откладываются вниз от графика у1.

Прямая у1=х является асимптотой для искомого графика, причем правая ветвь графика приближается к этой асимптоте снизу Кроме того, имеем:

при х®0 у=х-®-∞;

при х=1 у1=1; -у2=-1; у=у1 - у2=0.

21. y=sinx+cosx (рис. 51).

Рис. 51.

Преобразуем заданную функцию:

.

Строим график преобразованной функции:

.

22. y=cosx- sinx (рис. 52)

Рис. 52.

Аналогично предыдущему преобразуем данную функцию:

и строим график функции:

.

Страницы: 1 2 3 4 5 

Еще по теме:

Границы младшего школьного возраста
Границы младшего школьного возраста, совпадающие с периодом обучения в начальной школе, устанавливаются в настоящее время с 6-7 до 9—10 лет ...

Поэзия Есенина как предмет изучения в литературоведении
Рассмотрим поэзию Сергея Есенина с точки зрения предмета изучения в литературоведении. Изучением жизни и творчества Сергея Есенина занимали ...

Описание интернет-учебника "Курс лабораторных работ по изучению языка HTML"
"Курс лабораторных работ по изучению языка HTML" представляет собой целостную обучающую программу с примерами и контролирующими у ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2018 - All Rights Reserved - www.directeducation.ru