Педагогика и образование » Диалектика развития понятия функции в школьном курсе математики » График функции

График функции

Страница 1

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х, а на оси ординат - значения функции у=f(х). Графиком функции у=f(х) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции y=f(x).

Другими словами, график функции у=f(х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y=f(x).

Рис. 3.

Рис. 2.

На рис. 2 и 3 приведены графики функций у=2x+1 и у=х2-2х.

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его куска, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х=а принадлежит области определения функции y=f(x), то для нахождения числа f(а) (т. е. значения функции в точке х=а) следует поступить так. Нужно через точку с абсциссой x=а провести прямую, параллельную оси ординат; эта прямая пересечет график функции у=f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 4). Например, для функции f(х)=х2-2х

Рис. 4.

с помощью графика (рис. 3) находим f(-1)=3, f(0)=0, f(1)=-1, f(2)=0 и т.д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 3 ясно, что функция y=х2-2х принимает положительные значения при х<0 и при x>2, отрицательные - при 0<х<2; наименьшее значение функция у=х2-2х принимает при х=1.

Для построения графика функции f(х) нужно найти все точки плоскости, координаты х, у которых удовлетворяют уравнению у=f(х). В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, x1, х2, ., хk - и составляют таблицу, в которую входят выбранные значения функции. Таблица выглядит следующим образом:

x

x1

x2

xk

y

f(x1)

f(x2)

f(xk)

Составив такую таблицу, мы можем наметить несколько точек графика функции у=f(х). Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y=f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле, поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Страницы: 1 2 3 4 5 6

Еще по теме:

Информационные технологии при изучении английского языка в средней школе
С развитием современных технологий появилось больше возможностей использовать на уроках телевидение, видео, компьютерные обучающие программы, и учителя с удовольствием это делают. Но, к сожалению, видеофильмы и компьютерные программы - это уже готовый продукт, выполненный кем-то другим и вызывающий ...

Упражнения, направленные на формирование грамматических навыков
Система упражнений по иностранному языку всегда должна иметь своей целью практическое овладение иностранным языком. Она направлена на освоение тех операций с материалом для речи, которые необходимы для понимания и выражения мыслей на иностранном языке. Известно, что главная трудность в обучении гра ...

Сравнительный анализ подходов в преподавании офисных программ
При знакомстве с компьютером одним из первых рассматривается понятие операционной системы, её основные функции. В большинстве случаев это Windows, так как именно эта операционная система сегодня используется чаще других. Для пользователя Windows наибольший интерес представляют “мощные” приложения, ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2025 - All Rights Reserved 0.0108