Педагогика и образование » Диалектика развития понятия функции в школьном курсе математики » Изучение основных элементарных функций в школьном курсе математики

Изучение основных элементарных функций в школьном курсе математики

Страница 5

В 10 классе в учебнике Алимова рассматривается показательная функция. Основная цель –познакомить с многообразием свойств и графиков показательной функции в зависимости от значений оснований и показателей степени.

Первое с чем знакомятся ученики на уроках математики – это свойства показательной функции и ее графиком. На ее изучение отводится один параграф, который начинается с повторения свойств степеней. После чего вводится определение показательной функции. Далее рассматриваются основные свойства показательной функции. Свойства монотонности обосновываются аналитически и иллюстрируются на графике. В дальнейшем основное внимание уделяется иллюстрации свойств функции по графику (чтение графика). Приводятся примеры применения показательной функции для описания различных физических процессов. В учебнике приводится в пример формула радиоактивного распада , где m(t) и mo – масса радиоактивного вещества соответственно в момент времени t и в начальный момент времени t=0, T - период полураспада (промежуток времени, за который первоначальное количество вещества уменьшится вдвое). Так же рассказывается, что с помощью показательной функции выражается давление воздуха в зависимости от высоты подъема, ток самоиндукции в катушке после включения постоянного напряжения.

В учебниках Колмогорова показательная функция изучается в 11 классе. Прежде чем ввести понятие показательной функции f(x)=ax, где х принимает любые значения из множества действительных чисел, проводится подготовительная работа. Начинается со знакомства учащихся с функцией f(x)=ax, область определения которой – множество рациональных чисел. Для каждого положительного числа а можно найти значение выражения ( - любое рациональное число). Таким образом, любому числу х из множества Q соответствует действительное число ax. На странице 179-180 учебника после определения показательной функции помещен материал, адресованный учащимся, проявляющим повышенный интерес к занятиям математикой. В нем описана схема доказательства существования значения показательной функции для любого иррационального х (следовательно, и самой функции).

В учебнике Мордковича учащиеся впервые сталкиваются с понятием показательной функции уже в 9 классе, на примере формулы п-го члена геометрической прогрессии. Следующая встреча с данной функцией у учащихся происходит только в 11 классе. В §45 сначала рассматривается функция у=2х, хÎQ. При рассмотрении свойств у=2х отмечается, что это возрастающая функция, неограниченная сверху и ограниченная снизу, не имеющая ни наименьшего, ни наибольшего значения.

Кроме того, рассматривается функция у=2х при х=. Доказывается, что при вычислении получается конкретное число. То есть в учебнике Мордковича рассматриваются функции не только с рациональным показателем, но и действительным.

При формулировке общих свойств графика функции, рассматриваются два случая, когда основание целое число и дробное число большее нуля, но меньшее единицы. И только после этого вводится определение показательной функции.

Кроме того, в учебнике Мордковича изучается горизонтальная асимптота графика функции, и способ ее отыскания.

В учебнике обращается внимание на то, что учащиеся иногда путают понятия показательной функции и стенной. Предлагается сравнить данные функции. Далее автор не забывает упомянуть функцию . Говорится, что данная функция не считается ни показательной, ни степенной, но ее иногда называют показательно- степенной.

Страницы: 1 2 3 4 5 6 7

Еще по теме:

Анализ педагогического опыта Марченковой Анны Ивановны в организации работы и творческой деятельности народного ансамбля танца «Росинка»
В практическом разделе своей работы я бы хотела рассмотреть и проанализировать педагогические наработки и опыт доцента Владимирского Государственного Педагогического Университета Марченковой Анны Ивановны, которая после окончания Московского Государственного Института Культуры вернулась работать во ...

Вклад педагогов-последователей идей Ушинского
Одним из видных земских деятелей по народному образованию был Николай Александрович Корф (1834—1883). Он много сделал по организации земских школ и улучшению учебной и воспитательной работы в них. В 1867 году Корф был избран от земства членом училищного совета Александровского уезда (бывш. Екатерин ...

Дизартрия как один из видов речевых нарушений
Дизартрия - нарушение произносительной стороны речи, обусловленное недостаточностью иннервации речевой мускулатуры. Дизартрия является следствием органического поражения центральной нервной системы, при котором расстраивается двигательный механизм речи. При дизартрии нарушено не программирование ре ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2021 - All Rights Reserved 0.0507