Педагогика и образование » Формирование понятий обратных тригонометрических функций у учащихся на уроках алгебры » Методические разработки уроков по теме «Обратные тригонометрические функции»

Методические разработки уроков по теме «Обратные тригонометрические функции»

Страница 1

С учетом методических рекомендаций, приведенных выше, и на основании учебников для школ с углубленным изучением математики были разработаны уроки по теме «Обратные тригонометрические функции».

Конспект урока по алгебре №1 (10 класс)

Урок – лекция

Тема урока:

Обратные тригонометрические функции. Арксинус и арккосинус.

Тип урока: изучение нового материала.

Методы обучения: наглядный, словесный, практический.

Средства обучения: доска, конспект лекций, задачник, методические указания.

Цели урока:

– «открыть», что такое обратные тригонометрические функции;

учить находить значения аркфункций;

познакомиться со свойствами арксинуса и арккосинуса, их графиками;

– развивать интерес к математике;

воспитывать самостоятельность и аккуратность.

Ход урока

I. Организационный момент:

– приветствие класса;

– проверить готовность класса к уроку;

– сообщить тему урока и цели.

II. Изучение нового материала.

а) Учитель, для того, чтобы заинтересовать учащихся новым материалом, подводит учащихся к изучению обратных тригонометрических функций, начиная с актуализации знаний о взаимно однозначных отображениях и существовании обратной функции (сначала на примере более простых функций).

Вспомним общее определение функции. Предположим, что E(f)=Y и соотношение, осуществляемое функцией f, является взаимно однозначным, то есть каждому соответствует единственный. В этом случае обратное соотношение между Y и X также является функцией с областью определения Y и множеством значений X. Эта функция называется обратной к функции f и обозначается f –1. Отметим, что D(f)=E(f –1)=X; E(f)=D(f –1)=Y.

x1 y1

x2 y2

x3 y3

Рис. 12

Итак, функция имеет обратную, если она осуществляет взаимно однозначное соответствие между D(f) и E(f).

Функция, ставящая в соответствие каждому ученику класса его год рождения, вряд ли имеет обратную, так как в классе, как правило, всегда есть ученики, родившиеся в одном и том же году. Обратная функция существует, если все ученики имеют различные года рождения. Это может быть, например, в том случае, когда в классе всего 3 ученика, один из которых родился в 85, 86, 87 гг. Для городских школ это невозможно.

Вернемся к числовым функциям. Функция y=x3 осуществляет взаимно однозначное соответствие между областью определения D(f)=R и множеством значений E(f)=R. Поэтому существует обратная функция f –1 с областью определения D(f –1)=R и множеством значений E(f –1)=R. Для явной записи обратной функции решим уравнение. Получим . В этой записи аргумент обратной функции обозначен через y, значение функции – через x. Мы привыкли к другой записи, поэтому переобозначим х и y, получим явную запись обратной функции в виде . Графики исходной функции y=f(x) и обратной функции y=f–1(x) симметричны относительно прямой y=x – биссектрисы 1-го и 3-го координатных углов.

Функция y=x2 не имеет обратной функции на всей области определения D(f)=R, так как не существует взаимно однозначного соответствия между D(f) и E(f)=. Но если ограничить область определения этой функции множеством D(f)= , то в этом случае соответствие между D(f) и E(f)= = будет взаимно однозначным, и существует обратная функция f –1 c областью определения D(f –1)= и множеством значений E(f –1)= . Для записи обратной функции решим уравнение y= x2 при условии х ≥ 0. Получим (арифметическое значение корня), то есть обратная функция задается формулой.

Страницы: 1 2 3 4 5 6

Еще по теме:

Коррекционно-логопедическая работа по формированию лексико-грамматического строя речи
В итоге логопедического обследования ставится уровень речевой сформированности и уточняется диагноз для составления коррекционно-логопедической работы. Исходя из темы аттестационной работы: «формирование лексико-грамматического строя речи у дошкольников с нарушением зрения на логопедических занятия ...

Опыт работы учителей по обучению ритму и интонации английского языка
Перед каждым преподавателем иностранного языка, особенно целью, которого является развитие ритмико-интонационных навыков, встаёт вопрос: с помощью каких материалов можно работать над данным аспектом. Г.М Вишневская доктор философских наук, профессор ГУ города Иваново предлагает работу над ритмом ан ...

Критерии и средства диагностики уровня развития творческих способностей младших школьников
Для того чтобы процесс развития творческих способностей младших школьников осуществлялся успешно, необходимы знания об уровнях развития творческих способностей учащихся, поскольку выбор видов творчества должен зависеть от уровня, на котором находится учащийся. С этой целью используется диагностика, ...

Педагогика как наука


Педагогика как наука

Обучение было и всегда будет, пока живет человечество. Можно сказать, что подготовка молодого поколения к участию в жизни общества путем передачи социального опыта есть неотъемлемая общественная функция во все времена и у всех народов.

Категории

Copyright © 2025 - All Rights Reserved 0.0211